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Introduction

In age-structured stock assessment models, an estimate of the vector of probabilities
of maturity at age (for females in particular) is a necessary component of an estimate of
spawning stock biomass. When maturity at age changes over time, it is also necessary to
account for these changes.

State-space models have proved useful for inferring parameters driving dynamics of many
fish populations (e.g., Sullivan 1992; de Valpine and Hilborn 2005). The state-space model
is appealing because it directly accounts for changes in population attributes through time
that are imperfectly observed from various ongoing data collection activities. More generally,
the state-space model is useful for framing questions about any time series of data where
the attribute of interest changes through time (Durbin and Koopman 2001). Other aspects
of state-space models that are appealing from a more practical prespective, include that
predicted attributes at times where observations have large uncertainty due to either lower
sampling or poorer information in the collected data can be improved by observations that
neighbor the point in time with less uncertainty. Also, predictions can be made within
the time series where observations may be missing or backward or forward in time beyond
the available observations (i.e., hind- and fore-casting). As such properties are useful for
projection of fish populations into the future, we propose the use of a state-space model for
estimating maturatity at age over time.

The models

Maturity

We propose the use of generalized linear models (GLMs) to estimate probability of ma-
turity as a function of age, sex and year. We will assume that the true coefficients of the
GLM for the population are unbiasedly observed through the GLM coefficients estimated
from the survey data, but that these observations have error due to sampling. We also will
rely on the asymptotic normality of the estimated coefficients for year y and so that

β̂y ∼ N
(
βy, (XT

y WyXy)−1)

where Xy is the ny × p matrix of covariates, Wy = diag{py,i(1 − py,i)} and py,i is the
expected values for the ith datum in year y (McCullagh and Nelder 1989, pgs. 115-
119). When separate GLMs are fit by sex and year, the MLEs of the elements of β̂y =
(β̂y,0,m, β̂y,1,m, β̂y,0,f , β̂y,1,f )T are conditionally independent across sex (i.e, Cov(β̂y,1,m, β̂y,1,f |β) =
0) and the yearly MLEs are also independent (Cov

(
β̂y, β̂y+1

)
= 0).

We will assume a structural time series model for the yearly coefficients of the maturity
relationship (Harvey and Shephard 1993). In particular we will consider the local linear
trend model

β̂y|βy ∼ N
(
βy, (XT

y WyXy)−1)

βy+1|βy, γy ∼ N (βy + γy, Σ)
γy+1|γy ∼ N (γy, Φ) .(1)
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The first equation in eq. 1 reflects that the observed coefficients will be unbiased estimates
of the true coefficients each year, the second equation reflects how the true coefficients each
year are related to the true coefficients from the previous year and the third equation reflects
that trend parameter behaves according to a random walk.

Let αy be the stacked vector of βy and γy. In the state-space framework, the observation
and transition equations are

β̂y = Zαy + ǫy

αy+1 = Tαy + δy

where the relational matrices are
Z =

(
I4 04

)

and
T =

(
I4 I4
04 I4

)

where Ik is a k × k identity matrix and 0k is a k × k matrix of zeros (following Durbin and
Koopman 2001, Section 3.2). The observation error disturbance terms are ǫy ∼ N

(
0, (XT

y WyXy)−1
)

and the process error disturbance terms are

δy ∼ N
(
0,

(
Σ 04
04 Φ

))

which are assumed to be serially independent. The vector γy describes the relationships
of the maturity coefficients β to time, but the trend is allowed to vary through time in
the structural time series model. As the diagonal elements of Φ increase the trend in the
corresponding coefficients may fluctuate more from one year to the next and as the diagonal
elements of Σ increase there can be more drift of the corresponding coefficients. Note that the
deterministic linear model relating the coefficients to time is a special case where Φ = Σ = 0
so that there is no process error or autocorrelation of observations.

The only other parameter is an initial state vector α1 which is assumed to have the same
process error variance as subsequent state vectors (i.e., that of δy). The parameters of the
state-space model that we assume unknown (and estimate) are the components of the initial
state vector and the process error matrices (Φ and Σ). Various hypotheses may be tested
with likelihood ratio tests where null models have subsets of unknown parameters equal zero.
For example, we may test whether the coefficients are trending rather than just randomly
changing through time through a likelihood ratio test of the model where we estimate the
elements of γ1 and Φ and the reduced model where we assume those elements are zero.

Parameter estimation

Given the observations and variance estimates from the year- and sex-specific GLM fits,
the unknown parameters are the elements of the initial state vector α1 and the elements of
the process error variance matrices Σ and Φ. We assume that the process errors for each
maturity coefficient are independent so that the process error matrices are diagonal. The
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likelihood to be maximized with respect to the parameters θ is

L
(
θ|β̂1, . . . , β̂Y

)
= p(β̂1|θ)

Y∏

y=2

p(β̂y|β̂y−1, θ)

where the conditional densities p(β̂y|β̂y−1, θ) are provided by recursions of the well-known
Kalman filter (e.g., Durbin and Koopman 2001, Chapters 4 and 7).

Given the smooth prediction of the coefficients at time y, β̃y and prediction error variance
V̂

(
β̃y

)
we form the predicted logit of maturity at age as

l̃(y, a, s) = β̃0,y,s + β̃1,y,sa,

proportion mature at age for sex s as

p̃(y, a, s) = (1 + exp(−l̃(y, a, s)))−1

and corresponding 95% prediction interval as

CI (p̃(y, a, s)) =
{

1 + exp
[
−

(
l̃(y, a, s) ± z0.975ŜE

(
l̃(y, a, s)

))]}−1

where ŜE
(

l̃(y, a, s)
)

=
√

V̂
(

l̃(y, a, s)
)

and

V̂
(

l̃(y, a, s)
)

= V̂
(

β̃0,y,s

)
+ a2V̂

(
β̃1,y,s

)
+ 2aĈov

(
β̃0,y,s, β̃1,y,s

)
.

Example: Georges Bank haddock

To demonstrate the structural time series approach, we fit models to maturity data for
Georges Bank haddock collected during the spring survey between 1970 and 2004. The
models we fit include a time varying linear trend model as the full model (Mf ), a model with
no yearly variation in the linear trend (M2), a model further reduced with no linear trend
(M1) and a model further reduced with no process error (M0) as the null model (Table 1).

From the loglikelihood ratio tests (see Table 1), we observe that the “best” model is M1
with no linear trend detectable in any of the maturity coefficients. There was no difference in
the log-likelihoods between models Mf and M2, suggesting that the parameters composing
Φ are completely confounded with other parameters. The “best” model M1 equates to a
random walk of the coefficients through time. The estimates of the elements of the initial
state vector and the process variance matrix assuming model M2 are provided in Table 2.
The resulting proportions mature at ages 1, 2 and 3 predicted by the Kalman smooth follow
the yearly variation in the observed proportions at age well, especially those with better
precision (Figures 1 through 6). Furthermore, the process variance parameters are so large
that precision of forecasted proportions at age become poor very rapidly. The proportions
of females mature at ages 1, 2, and 3 used in the 2005 assessment compare well with the
smooth predictions in the corresponding years (Tables 3 and 4 and Figure 7).
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The “best” predicted state variables in forecasts under this structured time series model
(M1) will remain at the same prediction as the last year where observations are available (i.e.,
2004). This is an attribute of this particular model and hypotheses for other behaviors could
be proposed. One might consider a drift back to some overall mean across all or a certain
set of years where observations are available a better alternative. Perhaps these alternative
hypotheses could be compared objectively using the same framework.

Other applications

Given yearly estimates of any other population attributes such as mean weight at age or
length at age and corresponding estimates of observation errors, the structural time series
approach applied here for maturity could also be used to detect whether trends exist in these
other population attributes.

The structural time series approach can easily incorporate measured environmental co-
variates to improve predictions of the state through time and similar to GLMs the usefulness
of various environmental covariates in prediction of the state can be assessed.
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Figure 1. Estimated proportion mature for age 1 males by year. The observed proportions (black) are provided by yearly
generalized linear models and Kalman filtered (red) and smoothed (green) proportions are predicted from a random walk
model. Vertical lines represent corresponding 95% confidence intervals.
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Figure 2. Estimated proportion mature for age 2 males by year. The observed proportions (black) are provided by yearly
generalized linear models and Kalman filtered (red) and smoothed (green) proportions are predicted from a random walk
model. Vertical lines represent corresponding 95% confidence intervals.
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Figure 3. Estimated proportion mature for age 3 males by year. The observed proportions (black) are provided by yearly
generalized linear models and Kalman filtered (red) and smoothed (green) proportions are predicted from a random walk
model. Vertical lines represent corresponding 95% confidence intervals.

8



1970 1980 1990 2000 2010 2020

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pr
op

or
tio

n 
M

at
ur

e

Year

Figure 4. Estimated proportion mature for age 1 females by year. The observed proportions (black) are provided by yearly
generalized linear models and Kalman filtered (red) and smoothed (green) proportions are predicted from a random walk model.
Vertical lines represent corresponding 95% confidence intervals.
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Figure 5. Estimated proportion mature for age 2 females by year. The observed proportions (black) are provided by yearly
generalized linear models and Kalman filtered (red) and smoothed (green) proportions are predicted from a random walk model.
Vertical lines represent corresponding 95% confidence intervals.
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Figure 6. Estimated proportion mature for age 3 females by year. The observed proportions (black) are provided by yearly
generalized linear models and Kalman filtered (red) and smoothed (green) proportions are predicted from a random walk model.
Vertical lines represent corresponding 95% confidence intervals.
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Figure 7. Kalman smoothed (black) proportion mature at age 1 (left) 2 (middle) and 3 (right) female Georges Bank haddock
by year with corresponding estimates used in the 2005 assessment (red).
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Table 1. Models fit with maximized log-likelihood, number of estimated parameters, χ2

statistics for log-likelihood ratio tests and corresponding p-values.

Model Parameter reduction log(L) np χ2 P

Mf −378.85 16 < 0.00 > 0.999
M2 Φ = 0 −378.85 12 0.35 > 0.999
M1 γ1 = 0 −379.03 8 220.82 < 0.001
M0 Σ = 0 −489.43 4

Table 2. Estimated parameters and standard errors under model M1. The coefficients β are
for the initial state vector.

Parameter Estimate SE
β1 −2.758 0.855
β2 1.694 0.451
β3 −2.989 1.315
β4 1.229 0.499
Σ1,1 0.351 0.170
Σ2,2 0.090 0.048
Σ3,3 0.750 0.344
Σ4,4 0.106 0.055
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Table 3. Proportions mature at age for females used in 2005 assessment for Georges Bank
Haddock.

Year 1 2 3 4 5 6 7 8 9
1983 0.000 0.330 0.810 1.000 1 1 1 1 1
1984 0.120 0.330 0.940 1.000 1 1 1 1 1
1985 0.240 0.650 0.910 0.980 1 1 1 1 1
1986 0.240 0.650 0.910 0.980 1 1 1 1 1
1987 0.240 0.650 0.910 0.980 1 1 1 1 1
1988 0.240 0.650 0.910 0.980 1 1 1 1 1
1989 0.240 0.650 0.910 0.980 1 1 1 1 1
1990 0.100 0.560 0.940 0.990 1 1 1 1 1
1991 0.100 0.560 0.940 0.990 1 1 1 1 1
1992 0.100 0.560 0.940 0.990 1 1 1 1 1
1993 0.070 0.300 0.710 0.940 1 1 1 1 1
1994 0.070 0.300 0.710 0.940 1 1 1 1 1
1995 0.020 0.340 0.940 1.000 1 1 1 1 1
1996 0.020 0.340 0.940 1.000 1 1 1 1 1
1997 0.020 0.340 0.940 1.000 1 1 1 1 1
1998 0.020 0.340 0.940 1.000 1 1 1 1 1
1999 0.020 0.340 0.940 1.000 1 1 1 1 1
2000 0.020 0.340 0.940 1.000 1 1 1 1 1
2001 0.014 0.598 0.924 0.985 1 1 1 1 1
2002 0.014 0.598 0.924 0.985 1 1 1 1 1
2003 0.014 0.598 0.924 0.985 1 1 1 1 1
2004 0.014 0.598 0.924 0.985 1 1 1 1 1
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Table 4. Smooth predictions of proportions mature at age for Georges Bank Haddock females.

Year 1 2 3 4 5 6 7 8 9
1983 0.024 0.168 0.620 0.929 0.991 0.999 1 1 1
1984 0.086 0.482 0.902 0.989 0.999 1.000 1 1 1
1985 0.212 0.743 0.969 0.997 1.000 1.000 1 1 1
1986 0.383 0.877 0.988 0.999 1.000 1.000 1 1 1
1987 0.213 0.730 0.964 0.996 1.000 1.000 1 1 1
1988 0.105 0.506 0.899 0.987 0.999 1.000 1 1 1
1989 0.196 0.727 0.967 0.997 1.000 1.000 1 1 1
1990 0.170 0.709 0.967 0.997 1.000 1.000 1 1 1
1991 0.211 0.798 0.983 0.999 1.000 1.000 1 1 1
1992 0.134 0.684 0.968 0.998 1.000 1.000 1 1 1
1993 0.057 0.425 0.900 0.991 0.999 1.000 1 1 1
1994 0.058 0.453 0.918 0.993 1.000 1.000 1 1 1
1995 0.049 0.427 0.915 0.994 1.000 1.000 1 1 1
1996 0.057 0.481 0.934 0.995 1.000 1.000 1 1 1
1997 0.040 0.339 0.863 0.987 0.999 1.000 1 1 1
1998 0.054 0.423 0.904 0.992 0.999 1.000 1 1 1
1999 0.029 0.276 0.827 0.984 0.999 1.000 1 1 1
2000 0.070 0.540 0.949 0.997 1.000 1.000 1 1 1
2001 0.066 0.511 0.939 0.996 1.000 1.000 1 1 1
2002 0.181 0.773 0.981 0.999 1.000 1.000 1 1 1
2003 0.104 0.607 0.954 0.996 1.000 1.000 1 1 1
2004 0.104 0.607 0.954 0.996 1.000 1.000 1 1 1
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